

Journal of Molecular Catalysis A: Chemical 145 (1999) 127-138

www.elsevier.com/locate/molcata

Synthesis and catalytic activity of dinitosylchromium complexes of the type $[Cr(NO)_2(CO)_2L_2]^{2+}$, $\{Cr(NO)_2(OR)_2\}_n$ (R = Et, *i*-Pr) and $Cr(NO)_2(O_2CPh)_2$

A. Keller^{*}, R. Matusiak

Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland

Received 18 September 1998; accepted 9 December 1998

Abstract

New *trans*-dinitrosylchromium complexes of the type $[Cr(NO)_2(CO)_2L_2](BF)_4$ (L = MeNO₂, MeCN, MeOH; L₂ = bipy), $[Cr(NO)_2L_4](BF_4)_2$ (L = MeNO₂, MeOH, L₂ = bipy), $\{Cr(NO)_2(OR)_2\}_n$ (R = Et, *i*-Pr) and $Cr(NO)_2(O_2CR)_2$ (R = Ph) were obtained. Interactions of these complexes with Lewis acids (TiCl₄, SnCl₄ and EtAlCl₂) were investigated. The effect of those interactions is *trans*-*cis* isomerization of nitrosyl ligands and formation of respective adducts, while the adducts with EtAlCl₂, by further transformations, form *cis*-dinitrosylchromium ethylidene complexes. Catalytic activities of the systems complexes—Lewis acids were tested in the reactions with olefins (pent-1-ene, pent-2-ene, cyclopentene) and phenylacetylene. The adduct $[Cr(NO)_2(OEt)_2(EtAlCl_2)_2]$ and the first dinitrosylalkylidenechromium complex $\{Cr(NO)_2(CHMe)_2(OEt)_2(AlCl_2)_2\}_n$ were synthesized and characterized spectroscopically. Their catalytic activities were studied, too. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Chromium; Nitrosyl complexes; Ethylidene complexes; Metathesis; Oligomerization; Polymerization

1. Introduction

The nitrosyl complexes of transition metals have been studied for over 100 years [1]. The unique physical and chemical properties imparted to the compounds by the presence of strongly electronwithdrawing nitrosyl ligands, as well as possibility of their application in, among others, organic synthesis [2] are the reason of this interest. They are the catalysts or precursors of catalysts of many organic reactions, as oxidation [3–8], hydrogenation [9–11], oligomerization and polymerization [12–15], isomerization [16–20] and metathesis [16,21,22].

One of the most active catalysts of the reaction of olefin metathesis are nitrosyl complexes of molybdenum [2,16,23–25] and, a bit less, tungsten [16,21,26]. They also are catalysts of the oligomerization and polymerization reactions of alkenes and alkines [15,27,28].

^{*} Corresponding author. Tel.: +48-229281; E-mail: akeller@wchuwr.chem.uni.wroc.pl

The first examples of alkylidene complexes with low oxidation state and having nucleophilic =CHR ligands were obtained by reactions of dinitrosylmolybdenum complexes containing O-ligands (alkoxy and carboxylic ligands) with EtAlCl₂ [27,29,30].

There are not many data on the catalytic activity of nitrosyl chromium complexes in reactions with alkenes and alkines. These complexes, especially the dinitrosyl ones, are the less known among compounds of this type of the VI B group metals, possibly with the exception of the compounds with cyclopentadienyl ligands [31–37]. The dicationic complex *trans*-[Cr(NO)₂(MeCN)₄](PF₆)₂ is the only one known which cannot be predicted by theory [38], the six-coordinate dinitrosyl complex with {M(NO)₂}⁶ electronic structure with *trans* position of nitrosyl ligands to each other [39].

(i) Synthesis of new dicationic *trans*-dintrosylchromium complexes, especially of the dicarbonyldinitrosyl complexes and neutral *trans*-dinitrosylchromium complexes with alkoxy and carboxylic ligands, (ii) investigation of the interaction of these complexes with Lewis acids (MCl_4 , M = Ti, Sn and $EtAlCl_2$), (iii) synthesis and spectroscopy characterization of the first example of dinitrosylalkylidenechromium complex, and (iv) the study of catalytic properties of these complexes in metathesis and polymerization reactions of olefins and monosubstituted acetylene are described in this paper.

2. Experimental

All experiments were carried out under argon atmosphere using Schlenk techniques either in vacuum-line systems. Reagents were purified by standard methods. Solvents were distilled using appropriate drying agents under argon.

The IR spectra were recorded on a Nicolet Impact 400 spectrofotometer. ¹H and ¹³C NMR spectra were measured using a Bruker 300 spectrometer. Tetramethylsilane was used as an internal standard. Metathesis, oligomerization and polymerization reactions of olefins and acetylenes were monitored by gas chromatography, and the product were identified by GC-MS analysis (HP-5890II + 5971A).

The weight-average molecular weight (\overline{M}_w) and number-average molecular weight (\overline{M}_n) of the obtained polymers were determined by gel permeation chromatography (GPC) using polystyrene calibration (HPLC-HP109011 with DAD-UV/VIS and RJ detector HP1047A).

2.1. Synthesis of $[Cr(NO)_2(MeCN)_4](BF_4)_2$

Two equivalents of NOBF₄ in MeCN were added to a stirred suspension of $Cr(CO)_6$ (2 g, 9 mmol) in MeCN (25 ml). When the carbonyl substrate was consumed (controlled by IR spectra), the green solution was filtered off, and dark green hygroscopic solid was isolated by precipitation using diethyl ether. The solid was washed with diethyl ether and dried in vacuo (90% yield).

IR (nujol mulls): ν (NO) 1793 vs, ν (CN) 2334 s, 2306 m, ν (BF₄) 1035 vs. ¹H NMR (in CD₃NO₂ at 20°C): δ 2.01 (s, 12H, CH₃CN). Anal. Calc. for C₈H₁₂N₆B₂F₈O₂Cr: C, 21.36; H, 2.69; N, 18.68%. Found: C, 21,49; H, 2.77; N, 18.40%.

2.2. Synthesis of $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$

Solid NOBF₄ (2.1 g, 9 mmol) was added to a stirred suspension of $Cr(CO)_6$ (2 g, 9 mmol) in MeNO₂ (25 ml), and the reaction mixture was stirred for 3 h at 60°C. After this time the solution was filtered and concentrated to half of its original volume in vacuo before being treated dropwise with CH_2Cl_2 to induce precipitation of an orange–brown solid. The solid was collected by filtration, washed with CH_2Cl_2 and dried in vacuo (90% yield).

IR (nujol mulls): ν (NO) 1791 vs, ν (CO) 1928 s, 1911 s, ν (NO₂) 1575 m, ν (BF₄) 1035 vs. ¹H NMR (in CD₃CN at 20°C): δ 4.37 (s, 6H, CH₃NO₂). Anal. Calc. for C₄H₆N₄B₂F₈O₈Cr: C, 10.35, H, 1.30; N, 12.07%. Found: C, 10.83; H, 1.62; N, 11.90%.

2.3. Synthesis of $[Cr(NO)_2(MeNO_2)_4](BF_4)_2$

Solution of $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$ in MeNO₂ was refluxed for about 3 h, until the bands $\nu(CO)$ in the IR spectrum of the solution of the starting complex disappeared. The complex was precipitated with diethyl ether, washed with CH₂Cl₂ and hexane and dried in vacuo (98% yield).

IR (nujol mulls): ν (NO) 1798 vs, ν (NO₂) 1570 s, ν (BF₄) 1035 vs. ¹H NMR (in CD₃CN at 20°C): δ 4.75 (s, 12H, CH₃NO₂). Anal. Calc. for C₄H₁₂N₆B₂F₈O₁₀Cr: C, 9.07; H, 2.28; N, 15.86%. Found: C, 9.48; H, 2.34; N, 15.66%.

2.4. Synthesis of $[Cr(NO)_2(CO)_2(bipy)](BF_4)_2$

Equimolar amount of 2,2'-bipyridyl (bipy) in $MeNO_2$ was added to a solution of $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$ (2 g, 4.3 mmol) in $MeNO_2$ (25 ml). The solution was stirred for 15 min, and the compound was precipitated with diethyl ether, washed with CH_2Cl_2 and hexane and dried in vacuo.

IR (nujol mulls): ν (NO) 1761 vs, ν (CO) 1891 s, 1860 s, ν (C=C) 1608 m, ν (BF₄) 1035 vs. ¹H NMR (in CD₃CN at 20°C): δ 7.49–9.28 (m, 8H, bipy). Anal. Calc. for C₁₂H₈N₄B₂F₈O₄Cr: C, 28.95; H, 1.62; N, 11.25%. Found: C, 28.81; H, 1.71; N, 11.09%.

2.5. Synthesis of $[Cr(NO)_2(CO)_2(MeCN)_2](BF_4)_2$, $[Cr(NO)_2(CO)_2(MeOH)_2](BF_4)_2$ and $[Cr(NO)_2(bipy)_2](BF_4)_2$

These complexes were obtained in a similar manner to that described above, i.e., by treatment of $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$ in MeNO₂ with 2 M equivalents of MeCN, MeOH and 2,2'-bi-pyridyl, respectively.

2.5.1. $[Cr(NO)_2(CO)_2(MeCN)_2](BF_4)_2$

IR (nujol mulls): ν (NO) 1797 vs, ν (CO) 1920 s, 1870 s, ν (CN) 2334 vs, 2290 vs, ν (BF₄) 1035 vs. ¹H NMR (in CD₃NO₂ at 20°C): δ 2.01 (s, 6H, CH₃CN). Anal. Calc. for C₆H₆N₄B₂F₈O₄Cr: C, 17.01; H, 1.43; N, 13.22%. Found: C, 17.12; H, 1.52; N, 13.01%.

2.5.2. $[Cr(NO)_2(CO)_2(MeOH)_2](BF_4)_2$

IR (nujol mulls): ν (NO) 1767 vs, ν (CO) 1910 s, 1893 s, ν (OH) 3411 vs, ν (BF₄) 1035 vs. ¹H NMR (in CD₃CN at 20°C): δ 3.47 (s, 6H, CH₃OH), 4.06 (s, br, 2H, CH₃OH). Anal. Calc. for C₄H₈N₂B₂F₈O₂Cr: C, 11.84; H, 1.99; N, 6.90%. Found: C, 11.91; H, 2.08; N, 6.78%.

2.5.3. $[Cr(NO)_2(bipy)_2](BF_4)_2$

IR (nujol mulls): $\nu(NO)$ 1702 vs, $\nu(C=C)$ 1606 s, $\nu(BF_4)$ 1035 vs. ¹H NMR (in CD₃NO₂ at 20°C): δ 7.49–9.28 (m, 16H, bipy). Anal. Calc. for C₂₀H₁₆N₆B₂F₈O₂Cr: C, 42.29; H, 2.84; N, 12.33%. Found: C, 42.33; H 2.95; N, 12.15%.

2.6. Synthesis of $\{Cr(NO)_2(OR)_2\}_n$ (R = Et, i-Pr)

 $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$ (2 g, 4.3 mmol) was dissolved in appropriate alcohol (EtOH, *i*-PrOH; 10 ml) at about 0°C. The solution was heated to the room temperature and cooled again to below 0°C. NaOR (R = Et, *i*-Pr) in appropriate alcohol was added at this temperature to the solution. After 15 min, the solutions were filtered and removed under vacuum. The complexes were extracted from the remainder with a small amount of CH₂Cl₂ and precipitated with hexane (60% yield).

2.6.1. $\{Cr(NO)_2(OEt)_2\}_n$

IR (nujol mulls): $\nu(NO)$ 1720 vs, $\nu(OR)$ 1080 m, 1025 s, 980 sh. ¹H NMR (in MeCN at 20°C): δ 3.65 (s, br, 4H, CH_2 CH_3), 1.25 (s, br, 6H, CH_2CH_3). Anal. Calc. for $C_4H_{10}N_2O_4Cr$: C, 23.77; H, 4.99; N, 13.86%. Found: C, 24.08; H, 4.88; N, 13.08%.

2.6.2. $\{Cr(NO)_2(O-i-Pr)_2\}_n$

IR (nujol mulls): $\nu(NO)$ 1718 vs, $\nu(OR)$ 1093 m, 1029 s, 969 sh. ¹H NMR (in MeCN): δ 3.81 (s, br, 2H, CH(CH₃)₂), 1.06 (s, br, 12H, CH(CH₃)₂). Anal. Calc. for C₆H₁₄N₂O₄Cr: C, 31.31; H, 6.13; N, 12.07%. Found: C, 31.24; H, 6.25; N, 11.95%.

2.7. Synthesis of $Cr(NO)_2(O_2CPh)_2$

 $NaO_2CPh (1.24 \text{ g}, 8.6 \text{ mmol})$ in 2 ml MeOH was added to $[Cr (NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$ (2 g, 4.3 mmol) in MeNO₂ (20 ml) at room temperature. The reaction mixture was stirred for 15 min. Subsequent procedure as above.

IR (nujol mulls): ν (NO) 1700 vs, ν_{as} (CO₂) 1596 s. ¹H NMR (in CD₂Cl₂ at 20°C): δ 7.53 (s, 4H, H_{α} -Ph), 8.21 (s, 6H, H_{β} , $H\gamma$ -Ph). Anal. Calc. for C₁₄H₁₀N₂O₆Cr: C, 47.47; H, 2.85; N, 7.91%. Found: C, 47.62; H, 2.91; N, 7.78%.

2.8. Synthesis of $[Cr(NO)_2(OR)_2(MCl_4)_2]$ and $[Cr(NO)_2(O_2CPh)_2(MCl_4)_2]$ (M = Ti or Sn)

 MCl_4 (M = Ti or Sn) in CH_2Cl_2 was added to a stirred solution of appropriate $\{Cr(NO)_2L_2\}_n$ complex (L = OEt, O-*i*-Pr, O₂CPh) in CH_2Cl_2 in 1/2 molar ratio. The yellow-brown precipitates of the adducts were filtered off, washed with CH_2Cl_2 and dried in vacuo.

2.8.1. $[Cr(NO)_2(OEt)_2(TiCl_4)_2]$

IR (nujol mulls): $\nu_{s}(NO)$ 1882 vs, $\nu_{as}(NO)$ 1767 vs, $\nu(OR)$ 1088 m, 1019 s, 993 sh. ¹H NMR (in CD₃CN at 20°C): δ 4.76 (s, br, 2H, CH₂CH₃), 3.68 (s, br, 2H, CH₂CH₃), 1.26 (s, br, 3H, CH₂CH₃), 0.87 (s, br, 3H, CH₂CH₃). Anal. Calc. for C₄H₁₀N₂Cl₈O₄CrTi₂: C, 8.31; H, 1.74; N, 4.85; Cl, 48.43%. Found: C, 8.52; H, 1.80; N, 4.60; Cl, 48.60%.

2.8.2. $[Cr(NO)_2(O-i-Pr)_2(SnCl_4)_2]$

IR (nujol mulls): $\nu_{s}(NO)$ 1885 s, $\nu_{as}(NO)$ 1753 vs, $\nu(OR)$ 1087 vs, 1025 s, 913 m. ¹H NMR (in CD₃CN at 20°C): δ 4.15 (s, br, ¹H, CH(CH₃)₂), 3.92 (s, br, 1H, CH(CH₃)₂), 1.35 (s, 6H, CH(CH₃)₂), 1.09 (s, 6H, CH(CH₃)₂). Anal. Calc. for C₆H₁₄N₂Cl₈O₄CrSn₂: C, 9.61; H, 1.88; N, 3.74; Cl, 37.32%. Found: C, 9.82; H, 1.92; N, 3.48; Cl, 37.60%.

2.8.3. $[Cr(NO)_2(O_2CPh)_2(TiCl_4)_2]$

IR (nujol mulls): $\nu_{s}(NO)$ 1881 s, $\nu_{as}(NO)$ 1755 vs, $\nu(CO)$ 1595 vs. ¹H NMR (in CD₃CN at 20°C): δ 8.01 (s, 4H, H_{α} -Ph), 7.63 (s, 2H, H_{β} -Ph), 7.50 (s, 4H, H_{γ} -Ph). Anal. Calc. for

C₁₄H₁₀N₂Cl₈O₆CrTi₂: C, 23.03; H, 1.38; N, 3.84; Cl, 38.34%. Found: C, 23.38; H, 1.41; N, 3.60; Cl, 38.72%.

2.9. Synthesis of [Cr(NO)₂(OEt)₂(EtAlCl₂)₂]

A vigorously stirred solution of $\{Cr(NO)_2(OEt)_2\}_n$ (0.1 g, 0.49 mmol) in PhCl (5 ml) was cooled down to $-40^{\circ}C$. A solution of EtAlCl₂ in hexane (2.94 mmol) was added dropwise. Next, about 20 ml of hexane was added at this temperature. The brown precipitate of an adduct was filtered off, repeatedly washed with hexane and dried in vacuo.

IR (nujol mulls): $\nu_{s}(NO)$ 1884 s, $\nu_{as}(NO)$ 1756 vs, $\nu(OR)$ 1091 m, 1052 s, 997 m. ¹H NMR (in CD₃CN at 20°C): δ 3.80 and 3.52 (s, br, 4H, OC H_2 CH₃), 0.97 (s, br, 6H, OCH₂CH₃), 1.26 (s, 6H, CH₃H₂AlCl₂), -0.068 (s, 4H, CH₃H₂AlCl₂). Anal. Calc. for C₈H₂₀N₂Cl₄O₄CrAl: C, 21.07; H, 4.42; N, 6.14%. Found: C, 21.21; H, 4.50; N, 5.92%.

2.10. Synthesis of $\{Cr(NO)_2(CHMe)(OEt)_2(AlCl_2)_2\}_n$

EtAlCl₂ in hexane (2.94 mmol) was added dropwise to a vigorously stirred solution of $\{Cr(NO)_2(OEt)_2\}_n$ (0.1 g, 0.49 mmol) in PhCl (5 ml), at about -10° C. The solution was heated to room temperature and after 15 min the product was precipitated with hexane, filtered off, repeatedly washed with hexane and dried in vacuo.

IR (nujol mulls): $\nu_{s}(NO)$ 1895 s, $\nu_{as}(NO)$ 1770 vs, $\nu(OR)$ 1091 m, 1030s, 995 m. ¹H NMR (in CD₃CN, at -300°C): δ 7.66 (s, br, 1H, CHCH₃), 4.71 and 4.35 (s, br; 4H, CH₂CH₃), 0.91 (s, br; 9H,CH₂CH₃,). Anal. Calc. for C₆H₁₄N₁₂Cl₄O₄CrAl₂: C, 16.92; H, 3.31; N, 6.58%. Found: C, 17.08; H, 3.38; N, 6.17%.

3. Results and discussion

3.1. Synthesis of dinitrosylchromium complexes

All the six-coordinated dinitrosyl complexes of the VIB group metals have the $\{M(NO)_2\}^6$ electronic structure with nitrosyl ligands in *cis* position to each other [38,40]. The only exception among these complexes is *trans*-[Cr(NO)₂(MeCN)₄](PF₆)₂ [39]. This unique, as far, dinitrosylchromium complex with *trans* position of nitrosyl groups was found in the reaction of Cr(CO)₃(PhMe) with NOPF₆ in MeCN. The same complex is formed when Cr(CO)₆ is treated with two equivalents of NOBF₄ in a MeCN solution. Its IR spectrum exhibits only one strong ν (NO) band ((nujol mull) 1793 cm⁻¹; (in MeCN) 1789 cm⁻¹) and two ν (CN) frequencies of coordinated MeCN ligands ((nujol mull) 2306, 2334 cm⁻¹). Its ¹H NMR spectrum in CD₃NO₂ consists of one singlet (δ , 2.01 ppm) of the methyl groups of MeCN ligands.

Reaction of $Cr(CO)_6$ with NOBF₄ in MeNO₂ (60°C, $t_r \ge 3$ h) leads to the formation of a new type *trans*-dinitrosylchromium complex, $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$. This brown diamagnetic complex is moisture and oxygen sensitive and soluble in polar solvents; its solution decompose slowly in air. The IR spectra ((nujol mull) ν (CO) 1911, 1828, ν (NO) 1791, ν (NO₂) 1575 cm⁻¹; (in MeNO₂) ν (CO) 1926 and 1910, ν (NO) 1790 cm⁻¹) and ¹H NMR spectrum ((acetone-d₆) δ 4.37 (s, CH₃)) ppm) are consistent with the stereochemistry *trans*-*cis*-*cis*-[Cr(NO)₂(CO)₂(MeNO₂)₂](BF₄)₂.

MeNO₂ ligands are very easily replaced by a variety of other ligands. For example, the reaction of $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$ with 2,2'-dipyridyl (bipy) in eqimolar ratio and with MeCN, as well as MeOH in molar ratio of 1:2, leads to formation of $[Cr(NO)_2(CO)_2L_2](BF_4)_2$ (L₂ = bipy or L = MeCN and MeOH). All these complexes are brown and have the same stereochemistry core of

trans-*cis*-[Cr(NO)₂(CO)₂]²⁺. Their IR spectra in nujol mulls and in MeNO₂ solutions exhibit one ν (NO) and two ν (CO) frequencies (see Section 2). These complexes display ¹H NMR spectra in CD₃NO₂ with multiplets at 7.49–9.28 (8H, bipy) for [Cr(NO)₂(CO)₂(bipy)](BF₄)₂, one sharp signal at 2.01 (6H, CH₃CN) for [Cr(NO)₂(CO)₂(MeCN)₂](BF₄)₂, and two singlets at 3.47 (6H, CH₃OH) and 4.06 (2H, CH₃OH) for [Cr(NO)₂(CO)₂(MeOH)₂](BF₄)₂. Addition of donor ligands to [Cr(NO)₂(CO)₂(MeNO₂)₂](BF₄)₂ in excess gives *trans*-[Cr(NO)₂L₄](BF₄)₂ type complexes. For example, reaction of [Cr(NO)₂(CO)₂(MeNO₂)₂](BF₄)₂ (IR (nujol mull) ν (NO) 1720 cm⁻¹; ¹H NMR (CD₃CN) δ 7.49–9.28 (m, 16H) ppm). [Cr(NO)₂(MeCN)₄](BF₄)₂ can also be obtained by dissolving [Cr(NO)₂(CO)₂(MeNO₂)₂](BF₄)₂ in MeCN. IR monitoring of the reaction of [Cr(NO)₂(CO)₂(MeON)₂)₂(BF₄)₂ and to [Cr(NO)₂(MeON)₄](BF₄)₂, proceeds via [Cr(NO)₂(CO)₂(MeCN)₄](BF₄)₂ and to [Cr(NO)₂(MeOH)₄](BF₄)₂, proceeds via [Cr(NO)₂(CO)₂(MeCN)₄](BF₄)₂ and to [Cr(NO)₂(MeOH)₄](BF₄)₂, proceeds via [Cr(NO)₂(CO)₂(MeCN)₄](BF₄)₂ and to [Cr(NO)₂(MeOH)₄](BF₄)₂, proceeds via [Cr(NO)₂(CO)₂(MeOH)₄](BF₄)₂, where ν (NO) 1812, ν (CO) 1928 cm⁻¹, L = MeOH: ν (NO) 1752, ν (CO) 1890 cm⁻¹).

Very convenient method for synthesis of different dinitrosyl complexes [11,41–45] is based on the reaction of complex containing $[M(NO)_2]^{2+}$ moiety (M = Cr, Mo, W) with suitable ligands. Such a method was also applied by us for the synthesis of new neutral *trans*-dinitrosylchromium compounds:

$$[Cr(NO)_{2}(CO)_{2}(MeNO_{2})_{2}](BF_{4})_{2} \xrightarrow{+ 2NaOEt,} {Cr(NO)_{2}(OEt)_{2}}_{n} + 2NaOiPr, {Cr(NO)_{2}(OiPr)_{2}}_{n} + 2NaOCPh, {Cr(NO)_{2}(OCPh)_{2}}_{n}$$

The *trans*-dinitrosylchromium complexes, $\{Cr(NO)_2(OR)_2\}_n$ (R = E, *i*-Pr) and $Cr(NO)_2(O_2CR)_2$ (R = Ph, Me) are brown–green, soluble in benzene, toluene and chlorosubstituted solvents. They are moisture and air sensitive. The alkoxy complexes are polymeric. The degree of polymerization depends mainly on the temperature during synthesis, and also changes in time. Their IR spectra (see Section 2) are also characterized by strong bands of $\nu(NO)$ at 1700–1720 cm⁻¹, which are attributed to nitrosyl ligands *trans* coordinated in respect one to another. Characters of the spectra of $\{Cr(NO)_2(OR)_2\}_n$ in $\nu(OR)$ region correspond to the polymeric structure [46], like in dialkoxydinitrosylmolybdenum complexes [44]. Lack of well resolved resonances of alkoxy ligands in the ¹H NMR spectra of alcoxy complexes (see Section 2) is most probably caused by the terminal \Leftrightarrow bridge exchange of OR-ligands.

The ¹H NMR spectrum of $Cr(NO)_2(O_2CPh)_2$ exhibits two signals at 7.53 and 8.21 ppm due to α and $\beta + \gamma$ protons of phenyl groups, respectively.

Reaction of the complexes containing *trans*- $[Cr(NO)_2]^{2+}$ core with sulfur chelating ligands leads to formation of respective *cis*-dinitrosylchromium complexes. For example, reaction of *trans*- $[Cr(NO)_2(MeCN)_4]^{2+}$ with S₂CNEt₂⁻ and/or S₂C₂(CN)₂²⁻ leads to formation of *cis*- $[Cr(NO)_2(S_2CNEt_2)_2]$ and *cis*- $[Cr(NO)_2(S_2CNEt_2)_2]^{2-}$ [39].

3.2. Reaction of dinitrosyl chromium complexes with Lewis acids

3.2.1. Reaction with MCl_{4} (M = Ti, Sn)

Interactions of $\{Cr(NO)_2(OR)_2\}_n$ (R = Et, *i*-Pr) and $Cr(NO)_2(O_2CPh)_2$ with TiCl₄ and SnCl₄ in PhCl and CH₂Cl₂ solutions for molar ratios [Cr]/[MCl₄] equal to 1/2 were investigated. The effect

of these interactions was *trans*-*cis* isomerization of these complexes. The reactions products are respective adducts $[Cr(NO)_2(OR)_2(MCl_4)_2]$ and $[Cr(NO)_2(O_2CPh)_2(MCl_4)_2]$ (R = Et, *i*-Pr; M = Ti or Sn), where ligands NO are situated in mutual *cis* positions. Their IR spectra contain two characteristic frequencies $\nu(NO)$: ν_s at 1885–1875 cm⁻¹ and ν_{as} at 1765–1753 cm⁻¹ (see Section 2). The attack of Lewis acids towards the oxygen atoms of alkoxy and carboxylic ligands causes, in the first stage, that free coordination sites appear at the central atom. This allows reaching lower energetic states of the complex molecules, i.e., formation of *cis*-[Cr(NO)_2] configuration [47]. The free coordination sites are successively occupied by chlorines of Lewis acids, forming bridges Cr-Cl-M (M = Ti and Sn).

Pure $[Cr(NO)_2(OR)_2(MCl_4)_2]$ (R = Et, *i*-Pr; M = Ti or Sn) and $[Cr(NO)_2(O_2CPh)_2(TiCl_4)_2]$ adducts were isolated from respective systems in CH₂Cl₂. These adducts are soluble only in donor solvents (alcohols, MeCN, etc.). The ¹H NMR spectra of $[Cr(NO)_2(OR)_2(MCl_4)_2]$ in CD₃CN contain signals of alkoxy ligands (R = Et, M = Ti: δ 1.26, 0.87 (CH₃), 4.76, 3.68 (CH₂), ppm; R = *i*-Pr, M = Sn: δ 4.15, 3.92 (CH), 1.11 (CH₃)₂ ppm) and additional a signals at about 2.15 ppm (δ CH₃CN), which proves interaction of the adducts with the solvent. Character of these spectra, as well as the existence, in the IR spectra of the adducts, of the bands corresponding to ν (CO) of bridge and terminal alkoxy ligands suggests that some alkoxy groups could be located only at the metals of Lewis acids, which are connected to chromium atoms by chlorine bridges.

The ¹H NMR spectrum of $[Cr(NO)_2(O_2CPh)_2(TiCl_4)_2]$ exhibits, at room temperature, three broad singlets at 8.01, 7.63 and 7.50 ppm, due to α , β and γ , respectively.

3.2.2. Reaction with EtAlCl₂

Trans–cis isomerization of nitrosyl ligands is also an effect of interactions of *trans*-dinitrosychromium complexes with Lewis acids, leading to the formation of respective *cis*-adducts which, by further transformations into diethyl derivatives and their α -hydrogen elimination leads to formation of *cis*-dinitrosylchromium ethylidene complexes, like it was observed in the case of the molybdenum analogs [27,29,30]. Theoretical calculation for the model alkylidenedinitrosylmolybdenum complex [24,48] revealed that coordination of the alkylidene ligand in the Mo–NO bonding plane, realized from the opposite side to the NO ligands, required the smallest amount of activation energy.

Interactions of *trans*-dinitrosylchromium complexes with EtAlCl₂ were examined by IR method in the ν (NO) region in PhCl solutions for the complex/EtAlCl₂ molar ratios 1/2, 1/4 and 1/6. The reagents were mixed at -40° C and the IR spectra were recorded at ambient temperature, at fixed time intervals. The IR spectra of these solutions contain two ν (NO) frequencies ($\nu_s = 1907 \text{ cm}^{-1}$ and $\nu_{as} = 1793 \text{ cm}^{-1}$), the values independent on the type of ligand. It can be assumed that these frequencies characterize the ethylidenedinitrosylchromium complexes. Identical ν (NO) values of the complexes indicate that the kind of alkoxy and carboxylic ligands has no effect on electronic density of the central atom, similar to the case molybdenum analogs [24,30]. However, in contrary to the ethylidenedinitrosylmolybdene complexes, the chromium ones undergo decomposition, seen in gradual disappearance of the ν (NO) frequency. Complete decomposition occurs after about 3 h.

Initially, in the IR spectra of these systems, two shoulders at 1880 and 1769 cm⁻¹ corresponding to the ν_s i $\nu_{as}(NO)$ were observed, which quickly disappear (after about 5 min). These shoulders can be assumed to the $\nu(NO)$ vibrations of intermediate adducts formed.

The adduct $[Cr(NO)_2(OEt)_2(EtAlCl_2)_2]$ and the ethylidene complexes $\{Cr(NO)_2(CHMe)-(OEt)_2((AlCl_2)_2)_n$ were synthesized and spectrally characterized. The adduct is a brown precipitate reacting with oxygen and moisture. It is insoluble in alkanes, PhCl and CH_2Cl_2 and soluble in donor solvents, e.g., MeCN. Its IR spectrum (see Section 2) displays two $\nu(NO)$ bands typical of the

cis-{Cr(NO)₂}⁶ core. The character of this spectrum in the ν (OR) region indicates a bridge Cr–OR–Al coordination of ethoxy ligands (ν (CO) < 1050 cm⁻¹ [46]), but also the existence of terminal alkoxy ligands [46], probably coordinated to aluminium of EtAlCl₂ molecules, bonded to the cental atoms by Cr–Cl–Al bridges. Two proton resonances of CH₂ fragments of etoxy ligands in the ¹H NMR spectrum of this adduct (in CD₃CN, 20°C) at 3.80 and 3.52 ppm are consistent with the character of its IR spectrum in the region of ν (CO) alkoxy ligands. The ¹H NMR spectra exhibit also a broad singlet at 0.97 ppm due to methyl protons of ethoxy ligands, and triplet at 1.26 (6H, CH₃CH₂) and quartet at -0.068 (4H, CH₃CH₂) ppm due to protons of two EtAlCl₂ molecules. The adduct exhibits no catalytic activity in reactions with alkenes and alkines.

The diethoxydinitrosylethylidenechromium complex { $Cr(NO)_2(CHMe)(OEt)_2(AlCl_2)_2$ }_n is a brown precipitate, very sensitive on oxygen and moisture, insoluble in alkanes, aromatic solvents and CH₂Cl₂, undoubtedly because of its highly polymerized form. It is soluble in donor solvents, e.g., CH₃CN. Its IR spectra (nujol mull) exhibit two $\nu(NO)$ frequencies (1895 and 1770 cm⁻¹), the values a bit lower than the respective ones in solution. This effect was also observed for alkylidenedinitrosylmolybdenum complexes [27,30]. Character of IR spectra in $\nu(OEt)$ region is similar to that of the adduct (see Section 2), proving that some OEt groups are bonded to the AlCl₂ ones. The ¹H NMR spectrum in CD₃CN at -30° C contains broad signals of CH₂ (δ 4.71 (s, br; 2H), and 4.35 (s, br; 2H) ppm) and CH₃ protons (δ 0.91 s, br; 9H) of ethoxy ligands and a singlet at 7.66 ppm due to H_{α} of ethylidene ligand. The broad nature of this signal is an effect of dynamic exchange process, like in alkylidenedinitrosylmolybdenum complexes [27,30]. The high-field ¹H NMR resonance of ν -hydrogen is a proof for nucleophilic character of alkylidene ligands [49–51].

Also the alkylidene complex in CD_3CN undergoes destruction in time. It manifests in disappearance of the H_{α} signal at 7.66 ppm, and appearance of a signal in the resonance region of olefin protons at 6.05 ppm.

Alkylidenedinitrosylmolybdene complexes are stabilized by O-ligands (alkoxy and carboxylic) [27,30]. Such stabilizing effect of this kind of ligands was not observed in the case of chromium complexes under investigation. The reason could be lack of both alkoxy groups in the coordination sphere of chromium.

During the reaction of *trans*-dinitrosylchromium complexes of the type $[Cr(NO)_2(CO)_2L_2](BF_4)_2$ (L = MeNO₂, MeCN) with EtAlCl₂, respective *cis*-dinitrosyl complexes are formed, too. IR spectra of these complexes (in PhCl) are characterized by two $\nu(NO)$ frequencies ($\nu_s = 1895$ and $\nu_{as} = 1775$ cm⁻¹), the values identical to those described above for the ethylidenechromium complexes. The spectra do not contain the $\nu(CO)$ frequencies. After some time, these $\nu(NO)$ frequencies disappear, too.

3.3. Catalytic activity of dinitrosylchromium complexes

3.3.1. Dicationic complexes

The $[M(NO)_2(MeCN)_4](BF_4)_2$ (M = Mo, W) compounds catalyze polymerization, oligomerization and rearrangement of olefins reactions [15]. A similar reactivity pattern has been observed for other weakly ligated transition-metal cations, e.g., $[Pt(MeCN)_4](BF_4)_2$ [52,53], $[Rh(NO)(MeCN)_4](BF_4)_2$ [54] and $[Fe(NO)_2(solv)_n]X$ [55]. All these reactions may well follow the same mechanistic pathway, where generation of incipient carbonium ions by interaction of olefins with electrophilic transitionmetal complexes is a general phenomenon.

The dicationic dinitrosylchromium complexes, for example $[Cr(NO)_2(MeCN)_4](BF_4)_2$ and $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$, with NO groups mutually *trans* coordinated, also were found to

catalyze the polymerization of olefins. Their catalytic activity were tested in polymerization reaction of norbornene in MeNO₂ solution at the reagent concentration ratio [Cr]/[olefin] = 1/100. The yield of polynorbornene after 24 h was 30% for $[Cr(NO)_2(MeCN)_4](BF_4)_2$ and 40% for $[Cr(NO)_2(CO)_2(MeNO_2)_2](BF_4)_2$. The obtained polymers were insoluble in organic solvents.

3.3.2. $\{Cr(NO)_2(OR)_2\}_n - MCl_4$ and $Cr(NO)_2(O_2CPh)_2 - Mcl_2$ (M = Ti, Sn) systems

None of the adducts presented above exhibits any catalytic activity in the polymerization or oligomerization of phenylacetylene. However, after addition of a Lewis acid $(TiCl_4 \text{ or } SnCl_4)$ to the solution of precursor complexes $((Cr(NO)_2(O_2CPh)_2 \text{ and/or } \{Cr(NO)_2(OEt)_2\}_n)$ and excess of phenylacetylene, the conversion was observed (Table 1).

No polymerization or oligomerization occurred in the similar system based on dialkoxydinitrosylmolybdenum complex [56]. The steric effect, easier formation of a stable adduct caused a lack of catalytic activity in this system. The catalytic activity of the system with ethoxydinitrosylchromium complex is probably the effect of a lability of the ethoxy ligands, which manifests, among others, in their replacement from chromium atom to the Lewis acid metal.

The conversion of monomer and yield of methanol insoluble product (ca. 20%) hardly depend on the kind of Lewis acid. The products of these reactions are mainly triphenylbenzene derivatives, a small amount of linear oligomers, which weight-average molecular weights (\overline{M}_w) are about 600, and 1-phenylnaphtalene. Low molecular weight of the obtained methanol insoluble products can by caused by kinetic effects, as well as by possible degradation induced by the catalysts. The degradation products can be also 1,3,5-triphenylbenzene and 1-phenylnaphtalene [57–60]. The structure of the methanol insoluble products is *trans*-cisoidal (by ¹H NMR and IR [61,62]).

Thus, the following mechanism of oligomerization and cyclotrimerization of phenylacetylene is proposed. Reaction of catalyst precursor complex with Lewis acids causes formation of free coordination sites at the metal. Consequently, rearrangement of NO ligands to *cis*-position occurs and, if phenylacetylne is present in the reaction system, it coordinates to the metal forming vinylidene complex [63,64]. Further polymerization (oligomerization) proceeds by metal carbene mechanism. If the catalysts are metal carbenes, the cyclic trimers are formed only through the *cis*-cisoidal-induced backbiting and/or intramolecular reactions [60]. When the free coordination sites are blocked by, for instance, chlorines of the Lewis acids, inactive adducts are formed and reaction is terminated. For the systems with metal chloride-based catalyst, Masuda and Higashimura [65] proposed a mechanism of polymerization and cyclotrimerization of phenylacetylene by metal carbene and by metallacyclopenta-diene, respectively.

¹H NMR investigation of the $Cr(NO)_2(O_2CPh)_2$ -SnCl₄-phenylacetylene (PA) system ([Cr]/[Sn]/[PA] = 1/2/1) did not allow to identify the vinylidene complex, because of its fast reaction with the molecules of phenylacetylene even in very low concentrations. Therefore, these spectra

Table 1							
Polymerization of	phenylacety	ylene by	${Cr(NO)_{2}(OR)}$	$_{n}/MCl$	$_1$ i Cr(NO) ₂ (O ₂	$(CPh)_2 / MCl_4$	catalysts ^a

	-				
System	Solvent	Conv. [%]	Linear oligomers [%]	Trimers [%]	Dimer [%]
$\overline{\{\operatorname{Cr(NO)}_2(\operatorname{OEt)}_2\}_n / \operatorname{SnCl}_4}$	PhCl	10	0.64	6.94	2.42
$Cr(NO)_2(O_2CPh)_2/TiCl_4$	PhCl	20		19.32	0.68
$Cr(NO)_2(O_2CPh)_2/SnCl_4$	PhCl	2	0.14	1.36	0.5
$Cr(NO)_2(O_2CPh)_2 / SnCl_4$	CH_2Cl_2	20	2.36	15.03	2.61
$Cr(NO)_2(O_2CPh)_2 / TiCl_4$	CH_2Cl_2	20	2.54	16.02	1.44

^aReaction conditions: concentration of catalyst [Cr] = 0.49 mmol; [Cr]/[MCl₄] = 1/2; [Cr]/[PA] = 1:50; room temperature.

Table 2

System	t	Pent-1-ene			Pent-2-ene			Cyclopentene		
		% Metathesis	% Isomerization	% Oligomerization	\overline{M}_n	% Metathesis	% Oligomerization	\overline{M}_n	% Polymerization	\overline{M}_n
$\frac{\mathrm{Cr(NO)}_{2}(\mathrm{OEt})_{2}}{\mathrm{6 EtAlCl}_{2}}$	10 min	5 ^b	95 ^c			2 ^d				
2	60 min 24 h		100	45 100 ^f	660	1	35 100 ^f	570	52 ^e 100 ^e	
${Cr(NO)_2(O-i-Pr)_2}_n / 6 EtAlCl_2$	60 min		100 ^c	30			25			
2	24 h			45 ^f	630)	$40^{\rm f}$	530	30	1.4×10^{4}
${Cr(NO)_2(O_2CPh)_2}_n / 6 EtAlCl_2$	24 h		93°	72 ^f	530)	75 ^f	530	20	1.24×10^{4}
$\{Cr(NO)_{2}(CHMe)-(OEt)_{2}(AlCl_{2})_{2}\}_{n}$	24 h			20						

Catalytic activity of diethoxydinitrosylethylidenechromium complex and ${Cr(NO)_2(OR)_2}_n / EtAlCl_2$ (R = Et, O-*i*-Pr and Cr(NO)_2-(O_2CPh)/EtAlCl_2 systems^a

^aReaction conditions: solvent PhCl; concentrations of catalyst [Cr] = 0.49 mmol; $[Cr]/[EtAlCl_2] = 1/6$; [Cr]/[olefine] = 1/100; room temperature.

^bMetathesis to etene and okt-4-ene.

^cIsomerisation to pent-2-ene.

^dMetathesis to but-2-ene and hex-3-ene.

^ePolymer insoluble in organic solvents.

^fOligomerisation of product of metathesis and isomerisation.

contain the proton resonances of polyphenylacetylene ($\delta = 7.20-7.30$ ppm), and signals at 13.37 ppm most probably due to H_{α} of the carbene ligand.

3.3.3. ${Cr(NO)_2(OR)_2}_n$ and / or $Cr(NO)_2(O_2CPh)_2$ -EtAlCl₂ systems and ${Cr(NO)_2(CHMe) - (OEt)_2(AlCl_2)_2}_n$

The catalytic activity of dinitrosylethylidenechromium complex $\{Cr(NO)_2(CHMe)(OEt)_2(AlCl_2)_2\}_n$ and the systems $\{Cr(NO)_2(OEt)_2\}_n/EtAlCl_2$ and $Cr(NO)_2(O_2CPh)_2/EtAlCl_2$ were tested in reaction with pent-1-ene, pent-2-ene and cyclopentene in PhCl solution at ambient temperature. The activities of the catalysts can be read from the data in Table 2.

The polymeric ethylidene complex forms heterogeneous system and catalyzes polymerization of pent-1-ene. No metathesis products were found. Similar catalytic properties were exhibited by the polymeric species of alkylidenedinitrosylmolybdenum complexes [27,30].

Two-component systems (complex/EtAlCl₂) exhibit high activity in isomerization of pent-1-ene to pent-2-ene. Initially, after mixing the reagents, they catalyze also the metathesis reaction of pent-1-ene and pent-2-ene (Table 2). After some time, they cause only polymerization of the initial olefins and the products of their metathesis. Most probably, polymerization does not occur according to the carbene mechanism, and the catalysers of these reactions are the products of decomposition of ethylidene complexes formed in the system. The above suggestion could be supported by studies of the structure of polymers obtained in these systems from cyclopentene (Table 2). These polymers do not contain unsaturated fragments in their chains.

Acknowledgements

We thank the State Committee for Scientific Research for supporting this work (grant no. 3T09A09410).

References

- [1] K.A. Hofmann, Z. Anorg. Allg. Chem. 12 (1896) 146.
- [2] K.K. Pandey, Coord. Chem. Rev. 51 (1983) 69.
- [3] J. Smidt, R. Jira, Chem. Ber. 3 (1960) 162.
- [4] B.S. Tovorg, S.E. Diamond, F. Mares, A. Szalkiewicz, J. Am. Chem. Soc. 103 (1981) 3522.
- [5] R.D. Tiwari, K.K. Pandey, U.C. Agarwala, Inorg. Chem. 21 (1982) 845.
- [6] B.W. Graham, K.R. Laing, C.J. O'Connor, W.R. Roper, J. Chem. Soc., Dalton Trans. (1972) 1237.
- [7] J. Fleischer, D. Schnurpfeil, K. Seyfert, R. Taube, J. Prakt. Chem. 319 (1977) 995.
- [8] A. Keller, R. Matusiak, J.M. Sobczak, J. Mol. Catal. (1998) in press.
- [9] C.W. Bird, Transition Metal Intermediates in Organic Synthesis, Academic Press, London, 1967, p. 248.
- [10] R.A. Sanchez-Deigado, A. Andriollo, O.L. Deochoa, T. Suarez, N. Valencia, J. Organomet. Chem. 209 (1981) 77.
- [11] W. Strohmeier, K. Holke, J. Organomet. Chem. 193 (1980) C63.
- [12] J.P. Candlin, W.H. Janes, J. Chem. Soc. C (1968) 1856.
- [13] D. Ballivet-Tkatchenko, C. Billard, A. Revillon, J. Polym. Sci. 19 (1981) 1697.
- [14] I. Tkatchenko, J. Organomet. Chem. 124 (1977) C39.
- [15] A. Sen, R.R. Thomas, Organometallics 1 (1982) 1251.
- [16] E.A. Zuech, W.B. Hughes, D.H. Kubicek, E.T. Kittleman, J. Am. Chem. Soc. 93 (1970) 528.
- [17] S.T. Wilson, J.A. Osborn, J. Am. Chem. Soc. 93 (1971) 3068.
- [18] C.G. Pierpont, R. Eisenberg, Inorg. Chem. 11 (1972) 1094.
- [19] G. Dolcetti, Inorg. Nucl. Chem. Lett. 9 (1973) 705.
- [20] A. Keller, J. Mol. Catal. 70 (1991) 143.
- [21] R.J. Haines, Chem. Soc. Rev. 4 (1975) 155.
- [22] K.J. Ivin, Olefin Metathesis, Academic Press, London, 1983.
- [23] R. Taube, K. Seyferth, Rev. Inorg. Chem. 8 (1986) 31.
- [24] A. Keller, L. Szteremberg, J. Mol. Catal. 57 (1989) 207.
- [25] A. Keller, J.M. Sobczak, J.J. Ziókowski, in: E.R. Braithwaite, J. Haber (Eds.), Studies in Inorganic Chemistry 19, Chap. 11, Elsevier, Amsterdam, 1994, p. 618.
- [26] M. Leconte, Y. Ben Taarit, J.L. Bilhon, J.M. Basset, J. Mol. Catal. 8 (1980) 263.
- [27] A. Keller, J. Organomet. Chem. 407 (1991) 237.
- [28] A. Keller, J. Mol. Catal. 78 (1993) L15.
- [29] A. Keller, J. Organomet. Chem. 385 (1990) 285.
- [30] A. Keller, J. Organomet. Chem. 436 (1992) 199.
- [31] M.A. Bush, G.A. Sim, G.R. Knox, M. Ahmad, C.G. Robertson, J. Chem. Soc., Chem. Commun. (1969) 74.
- [32] M.A. Bush, G.A. Sim, J. Chem. Soc. A (1970) 605.
- [33] O.L. Carter, A.T. Mc Phail, G.A. Sim, J. Chem. Soc. A (1966) 1095.
- [34] G.B. Richter-Addo, P. Legzdins, Chem. Rev. 88 (1988) 991.
- [35] F.J. Regina, A. Wojcicki, Inorg. Chem. 19 (1980) 3803.
- [36] P. Legzdins, G.B. Addo, F.W.B. Einstein, R.H. Jones, Organometallics 9 (1990) 431.
- [37] P. Legzdins, B. Wassink, Organometallics 7 (1988) 482.
- [38] J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13 (1974) 339.
- [39] N.G. Connolly, L.F. Dahl, Chem. Commun. (1970) 880.
- [40] R.D. Feltham, J.H. Enemark, in: G.L. Geoffroy (Ed.), Topics in Inorganic and Organometallic Stereochemistry, Chap. 4, Wiley-Interscience, New York, 1981, p. 155.
- [41] M. Green, S.H. Taylor, J. Chem. Soc., Dalton Trans. (1972) 2629.
- [42] M.F. Perpinan, L. Ballestr, A. Santos, A. Monge, C. Ruiz-Valero, E.G. Puebla, Polyhedron 6 (1987) 1523.
- [43] A.D. Hunter, P. Legzdins, Inorg. Chem. 23 (1984) 4198.
- [44] A. Keller, Inorg. Chim. Acta 149 (1988) 165.
- [45] A. Keller, J. Mol. Catal. 53 (1989) L9.
- [46] D.C. Bradley, Proc. Symp. Coord. Chem. (1965) 1964.
- [47] A. Keller, L. Szteremberg, R. Matusiak, to be published.
- [48] A. Keller, L. Szterenberg, Z. Naturforsch. 47b (1992) 1469.
- [49] A. Aguero, J. Kress, J.A. Osborn, J. Chem. Soc., Chem. Commun. (1985) 793.
- [50] J. Kress, A. Aguero, J.A. Osborn, J. Mol. Catal. 36 (1986) 1.
- [51] R.R. Schrock, R.T. De Pue, J. Feldman, C.J. Schaverien, J.C. Dewan, A.H. Lin, J. Am. Chem Soc. 110 (1988) 1423.
- [52] A. Sen, T.-W. Lai, J. Am. Chem. Soc. 103 (1981) 4627.
- [53] A. Sen, T.-W. Lai, Organometallics 1 (1982) 415.
- [54] N.G. Connelly, P.T. Draggett, M. Green, J. Organomet. Chem. 140 (1977) C10.
- [55] D. Ballivet-Tkatchenko, C. Billard, A. Revillon, J. Polym. Sci., Polym. Chem. Ed. 19 (1983) 1697.

- [56] A. Keller, R. Matusiak, to be published.
- [57] V. Percec, P. Rinaldi, Polym. Bull. 9 (1983) 548.
- [58] V. Percec, Polym. Bull. 10 (1983) 1.
- [59] A. Furlani, C. Napeletano, M.V. Russo, W.J. Feast, Polym. Bull. 16 (1986) 1221.
- [60] J. Kunzler, V. Percec, J. Polym. Sci., Part A: Polym. Chem. 28 (1990) 1221.
- [61] C. Simionescu, V. Percec, Dumitresku, J. Polym. Sci., Polym. Chem. Ed. 15 (1977) 2497.
- [62] C. Simionescu, V. Percec, J. Polym. Sci., Polym. Chem. Ed. 18 (1980) 147.
- [63] S.J. Landon, P.M. Shulman, G.L. Geoffroy, J. Am. Chem. Soc. 107 (1985) 6739.
- [64] J.S. Filippo Jr., A.F. Aowinski, L.J. Romano, J. Am. Chem. Soc. 97 (1975) 1599.
- [65] T. Masuda, T. Higashimura, Adv. Polym. Sci. 81 (1987) 121.